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Abstract: Changing wildfire regimes are causing rapid shifts in forests worldwide. In particular, forested 

landscapes that burn repeatedly in relatively quick succession may be at risk of conversion when pre-fire 

vegetation cannot recover between fires. Fire refugia (areas that burn less frequently or severely than 

the surrounding landscape) support post-fire ecosystem recovery and the persistence of vulnerable 

species in fire-prone landscapes. Observed and projected fire-induced forest losses highlight the need to A
cc

ep
te

d 
A

rt
ic

le

https://doi.org/10.1111/GCB.15655
https://doi.org/10.1111/GCB.15655
https://doi.org/10.1111/GCB.15655
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.15655&domain=pdf&date_stamp=2021-04-25


This article is protected by copyright. All rights reserved

understand where and why forests persist in refugia through multiple fires. This research need is 

particularly acute in the Klamath Siskiyou ecoregion of southwest Oregon and northwest California, USA, 

where expected increases in fire activity and climate warming may result in the loss of up to one-third of 

the region’s conifer forests, which are the most diverse in western North America. Here, we leverage 

recent advances in fire progression mapping and weather interpolation, in conjunction with a novel 

application of satellite smoke imagery, to model the key controls on fire refugia occurrence and 

persistence through one, two, and three fire events over a 32-year period. Hotter-than-average fire 

weather was associated with lower refugia probability and higher fire severity. Refugia that persisted 

through three fire events appeared to be partially entrained by landscape features that offered 

protection from fire, suggesting topographic variability may be an important stabilizing factor as forests 

pass through successive fire filters. In addition, smoke density strongly influenced fire effects, with fire 

refugia more likely to occur when smoke was moderate or dense in the morning, a relationship 

attributable to reduced incoming solar radiation resulting from smoke shading. Results from this study 

could inform management strategies designed to protect fire-resistant portions of biologically and 

topographically diverse landscapes.

Keywords: Forest loss; Forest resilience; Klamath-Siskiyou Ecoregion; Reburn; Refugia; Wildfire
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Introduction

Wildfire frequency and severity shape ecosystems, affecting biodiversity and ecosystem services 

across the globe. In recent decades, increasing fire extent and severity have raised concerns about forest 

decline and type conversions (Boer, De Dios, & Bradstock, 2020; Coop et al., 2020; Parks & Abatzoglou, 

2020). Wildfire-driven conversions of forest to alternative states can occur when high-severity fire 

overwhelms species’ fire-adaptive traits at local and landscape scales (Johnstone et al., 2016; Whitman, 

Parisien, Thompson, & Flannigan, 2019). In some cases repeat burning, also referred to as “reburn” or 

“short-interval fire” (Buma, Weiss, Hayes, & Lucash, 2020; Prichard, Stevens-Rumann, & Hessburg, 

2017), can result in forest loss when species’ resistance (ability to remain relatively unchanged by fire) 

and resilience (ability to recover following fire) mechanisms are overwhelmed (Bowman, Murphy, 

Neyland, Williamson, & Prior, 2014; Holz, Wood, Veblen, & Bowman, 2015; Turner, Braziunas, Hansen, & 

Harvey, 2019). In contrast, some places persist as forest when surrounding areas burn at higher 

frequency and/or severity, and these “fire refugia” are important features of landscapes where high-

severity reburn is increasing (Collins, Bennett, Leonard, & Penman, 2019; Coop et al., 2020). 

Understanding the biophysical drivers that support fire refugia in forests worldwide contributes to the 

growing toolbox supporting adaptation in response to global change (Krawchuk et al., 2020).  

Fire refugia are areas that burn less frequently or severely than the surrounding landscape – 

where dominant elements of pre-fire vegetation, like trees, persist relatively unaltered (Krawchuk et al., 

2016; Meddens et al., 2018). Fire refugia (hereafter, “refugia”) can support post-fire ecosystem recovery 

and the persistence of vulnerable species in fire-prone landscapes (Landesmann & Morales, 2018; 

Robinson et al., 2013; Schwilk & Keeley, 2006). Although repeat burning and disturbance refugia have 

become important research foci in recent years (Buma et al., 2020; Krawchuk et al., 2020), relatively 

little is known about where and why refugia persist as they pass through successive fire filters (but see 

Martinez et al. 2019). Conceptually, refugia occur and endure along a gradient ranging from transient 

refugia that survive a single fire event to persistent refugia that change relatively little through multiple 

fire events (Meddens et al., 2018). Refugia are more likely to be transient when they arise due to 

stochastic weather and fire behavior conditions unique to an individual fire event (Berry et al., 2015; 

Robinson et al., 2013). Refugia also occur due to less dynamic factors such as fuel arrangement and 

availability, as well as relatively immutable topographic features such as rocky outcrops with 

discontinuous fuels (Adie, Kotze, & Lawes, 2017; Landesmann, Gowda, Garibaldi, & Kitzberger, 2015), 

and landscape depressions, cold-air pools, and poleward-facing aspects where high fuel moistures limit A
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fire intensity (Leonard, Bennett, & Clarke, 2014; Román-Cuesta, Gracia, & Retana, 2009; Wilkin, Ackerly, 

& Stephens, 2016). These more enduring features may lend support to persistent refugia. However, 

refugia may be more likely to “wink out” after a period of fire exclusion (Downing, Johnston, Krawchuk, 

Merschel, & Rausch, 2020), or during severe fire weather conditions (Kolden, Bleeker, Smith, Poulos, & 

Camp, 2017).

The Klamath-Siskiyou ecoregion of northern California and southwestern Oregon provides an 

ideal natural laboratory to study the drivers of refugia occurrence and persistence. The Klamath-

Siskiyou (hereafter “K-S”) is a biodiversity hotspot that supports more conifer species than any other 

region in western North America (Cheng, 2004; Whittaker, 1960). Between 1985 and 2017, 

approximately 200,000 ha burned twice, and 18,000 ha burned three times (Figure 1). K-S conifer 

forests are vulnerable to loss through repeat burning and a phenomenon known as “interval squeeze ” or 

“immaturity risk” (Enright, Fontaine, Bowman, Bradstock, & Williams, 2015; Keeley, Ne’eman, & 

Fotheringham, 1999). High-severity burned conifer forests in the K-S typically convert to shrubland or 

hardwood forest (McCord, Reilly, Butz, & Jules, 2020; Odion, Moritz, & Dellasala, 2010). This early seral 

conversion is perpetuated when repeat burning kills regenerating conifers before seedlings have 

overtopped competing vegetation, developed resistance to fire, and/or become reproductively mature 

(Tepley, Thompson, Epstein, & Anderson-Teixeira, 2017). Fire has been an important ecological process 

in the K-S for millennia (Colombaroli & Gavin, 2010; Mohr, Whitlock, & Skinner, 2000), historically 

contributing to the maintenance of patchy, heterogeneous landscapes composed of conifer and 

hardwood forests, shrublands, and grasslands (Odion et al., 2004). However, hotter and drier climatic 

conditions and a lack of surviving post-fire seed sources undermine the ability of conifer forests to 

recover following high-severity fire (Tepley et al., 2017). Climate warming is expected to increase fire 

frequency in the K-S (Davis, Yang, Yost, Belongie, & Cohen, 2017), and repeat burning is projected to 

convert about one-third of the region’s conifer forest to shrublands or hardwood forest by the end of the 

century (Serra-Diaz et al., 2018). In some cases, these conversions may provide ecosystem benefits 

where early-seral communities have declined because of afforestation resulting from fire suppression 

(Knight, Cogbill, Potts, Wanket, & Battles, 2020). In others, widespread conifer forest loss may result in 

undesirable impacts to biodiversity, carbon storage, and timber supplies (Miller, Thompson, Tepley, & 

Anderson-Teixeira, 2018). 

Identifying the areas most likely to persist as forest through wildfire requires landscape-scale 

assessments of the factors that drive fire behavior and severity: topography, fuels, and weather. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Topography influences fire behavior directly as the physical template across which fire burns 

(Rothermel, 1972) and indirectly by mediating fuel and vegetation characteristics and fine-scale weather 

and climate (Kane et al., 2015; Wilkin et al., 2016). Low-severity fire effects in the K-S have been 

associated with lower elevations that are less likely to burn severely in head fire originating from lower 

slope positions (Estes, Knapp, Skinner, Miller, & Preisler, 2017; Grabinski, Sherriff, & Kane, 2017), as well 

as north-facing aspects where fuel moistures are elevated due to lower incoming solar radiation 

(Alexander, Seavy, Ralph, & Hogoboom, 2006; Taylor & Skinner, 2003). Fuel influences fire behavior as a 

function of its composition, structure, and arrangement, all of which reflect underlying biophysical 

gradients and disturbance history (Agee, 1993). Conifer stands composed of larger trees in the K-S tend 

to burn at lower severities than shrublands and hardwood forests (Grabinski et al., 2017; Odion et al., 

2004; Thompson & Spies, 2009), although these relationships vary with species composition and 

associated flammability (Perry et al., 2011). Top-down weather factors such as temperature, wind, and 

humidity influence fire behavior as well as the availability of fuels to burn. Fire severity in the K-S is 

strongly mediated by fire weather conditions during moderate conditions (Estes et al., 2017), but even 

more so when severe conditions override other fuel and topographic controls (Thompson & Spies, 

2009).

Smoke is another factor that may influence fire severity and refugia patterns. Temperature 

inversions under stable air masses concentrate smoke at lower elevations in mountainous landscapes 

like the K-S (Robock, 1988), where fire-atmospheric feedback mechanisms can result in persistent 

inversions that last for days or weeks (Kochanski et al., 2019). Beneath inversions, wind speeds are 

lower due to reduced vertical mixing, and temperatures are cooler due to the scattering and absorption 

of incoming solar radiation; above inversions, temperatures are elevated when smoke aerosols are 

sufficiently dense to absorb radiation and radiate heat into the atmosphere (Kochanski et al., 2019). 

These effects are known as “smoke shading” (Lareau & Clements, 2015). Researchers in the K-S have 

reported reduced fire severity below smoke inversions relative to what would be expected in the 

absence of an inversion (Estes et al., 2017; Miller, Skinner, Safford, Knapp, & Ramirez, 2012; Taylor, 

Skinner, & Estes, 2009). However, no research to date has directly quantified the influence of smoke 

density on fire effects in the K-S or elsewhere.

Here we explore the effects of repeat burning on refugia by addressing the following question: 

where and why do conifer forests persist in refugia through multiple fire events? We leverage recent 

advances in fire mapping and weather interpolation–combined with a novel application of satellite-A
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based smoke imagery–to undertake a broadscale retrospective analysis of fire severity through multiple 

fire events in the K-S. We focus on mature, conifer-dominated (MCD) forests because these ecosystems 

are vulnerable to projected changes in climate and fire regimes, and because shrublands and hardwood 

forests respond differently to repeat burning due to their resprouting ability. Specifically, we evaluate 

the effects and relative importance of topography, fuels, and weather factors on the probability of MCD 

refugia (1) forming during an initial fire, (2) persisting through a reburn, and (3) persisting through a 

triple burn. By examining the similarities and differences among these three scenarios, we elucidate the 

dominant controls of refugia occurrence and persistence in an ecosystem at risk of widespread fire- and 

climate-induced forest loss. 
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Materials and methods

Study area 

The Klamath-Siskiyou ecoregion (Figure 1) is a topographically and geologically varied 

landscape that supports globally important biodiversity (Olson et al., 2012). The 48,400 km2 study area 

is generally characterized by a Mediterranean climate with cool, wet winters and warm, dry summers. 

Strong west to east temperature and precipitation gradients and complex mountainous topography 

result in substantial climatic variability (Skinner, Taylor, & Agee, 2006). Mean annual temperature 

averages 11.5°C; mean annual precipitation averages 1491 mm (PRISM, 2020). Thunderstorms are 

common during the summer months, and lightning-caused fires account for most of the area burned in 

the region over the last half century (Skinner et al., 2006).

Fire was frequent in much of the K-S during the centuries prior to European colonization. Conifer 

forests at low and middle elevations burned every 5 - 20 years on average, while upper elevations and 

riparian areas burned somewhat less frequently (Metlen, Skinner, Olson, Nichols, & Borgias, 2018; 

Skinner, 2003; Stuart & Salazar, 2000; Taylor & Skinner, 1998, 2003). Pre-colonization fires were 

characterized by a mixed-severity regime that supported exceptionally diverse mosaics of forests, 

shrublands, and grasslands (Halofsky et al., 2011; Metlen et al., 2018; Taylor & Skinner, 1998). 

Institutionalized fire suppression began in the early 20th century, and by the 1940s these efforts had 

radically reduced fire frequencies (Metlen et al., 2018; Stuart & Salazar, 2000; Taylor & Skinner, 1998, 

2003). The relative absence of fire has resulted in widespread afforestation and densification, increased 

fuel accumulations, and compositional shifts towards more fire-sensitive species (Knight et al., 2020; 

Perry et al., 2011; Taylor & Skinner, 2003). Prolonged fire-free periods may have occurred in the region 

historically (Colombaroli & Gavin, 2010). However, modern fire exclusion and resultant changes to fuels, 

in conjunction with longer fire seasons and more extreme fire weather (Abatzoglou & Williams, 2016; 

Westerling, 2016), appear to be driving increases in fire extent, frequency, and severity (Dennison, 

Brewer, Arnold, & Moritz, 2014; Steel, Koontz, & Safford, 2018). 

Contemporary MCD forests in the K-S are dominated by Douglas-fir (Pseudotsuga menziesii) with 

lesser amounts of white fir (Abies concolor), ponderosa pine (Pinus ponderosa), incense cedar 

(Calocedrus decurrens), sugar pine (Pinus lambertiana), and Jeffrey pine (Pinus jeffreyi) (Appendix S1). 

These species do not resprout when top-killed by fire, requiring seeds dispersed from surviving (or very 

recently living) trees to regenerate. In contrast, less common serotinous or semi-serotinous species in 
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the region, such as knobcone pine (Pinus attenuata), can reproduce following high-severity fire from in 

situ seed sources. 

Common hardwood tree species such as Tanoak (Notholithocarpus densiflorus), Pacific madrone 

(Arbutus menziesii), canyon live oak (Quercus chrysolepis), and chinkapin (Chrysolepis chrysophylla) 

resprout prolifically following fire and are widespread, subdominant tree species in MCD forests 

(Donato, Fontaine, Robinson, Kauffman, & Law, 2009). Common resprouting sclerophyll shrub genera 

include Arcostaphylos and Ceanothus, some species of which also recruit abundantly from soil seedbanks 

following fire (Knapp, Phillip Weatherspoon, & Skinner, 2012; Odion et al., 2010). 

Analysis overview

We developed three statistical models of refugia probability in MCD forests, constrained by the 

temporal availability of fire severity and fuels data from Landsat imagery (since 1984) and fire weather 

and smoke data associated with MODIS imagery (since 2002): (1) The initial fire model examines refugia 

probability in MCD forests that burned for the first time as early as 2002 and subsequently reburned. (2) 

The reburn model examines refugia probability in MCD forests that persisted through an initial fire event 

as refugia as early as 1985 and reburned after 2001. (3) The triple fire model examines refugia 

probability in MCD forests that persisted through both an initial and reburn fire event as refugia and 

burned for a third time after 2001.

Mapping MCD fire refugia

Once, twice, and triple burned areas were identified using fire perimeter data acquired from the 

Monitoring Trends in Burn Severity (MTBS) large fire (>400 ha) database (https://www.mtbs.gov; 

Eidenshink et al. 2007). Following Meigs and Krawchuk (2018), we created fire severity maps using the 

relative differenced normalized burn ratio (RdNBR; Miller and Thode 2007) in two-year intervals (fire 

year ±1 year) from 30-m Landsat time series fitted with the LandTrendr algorithm (Kennedy, Yang, & 

Cohen, 2010). Image processing was conducted in Google Earth Engine (Gorelick et al., 2017). Refugia 

were identified as locations displaying little or no fire-induced spectral change (L. Collins et al., 2019; 

Kolden, Lutz, Key, Kane, & van Wagtendonk, 2012), based on a refugia threshold of RdNBR ≤166 from 

Meigs and Krawchuk (2018) corresponding to ≤10% tree basal area mortality (Reilly et al., 2017). This 

RdNBR threshold reliably identified refugia for field plots located in our study area (overall classification 

accuracy=85%, Appendix S2). Here, fire refugia are referred to as: (1) initial refugia from a single fire, (2) A
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transient refugia that do not persist through reburn, (3) persistent refugia that survive reburn, and (4) 

super-persistent refugia that survive triple burn (Figure 2). 

We identified MCD forest from existing pre-fire composition and structure maps developed using 

gradient nearest neighbor (GNN) imputation (Ohmann, Gregory, Roberts, Cohen, & Kennedy, 2012). GNN 

maps combine Landsat time series and forest inventory data (n≈17,000) to impute plot-level forest 

structure and composition attributes. We classified areas with an old-growth structural index of 80 years 

or greater as mature forest (Davis et al., 2015). We identified areas containing >50% basal area of live 

conifer trees ≥2.5 cm diameter at breast height as conifer forest. We classified MCD forest using maps 

produced for the year prior to initial fire.

We generated random samples of 30-m pixels for our three statistical models of refugia 

probability. Following Zald and Dunn (2018), we imposed a 200-m inter-plot minimum distance 

constraint to reduce the potential for spatial autocorrelation. For the initial fire model (n=15,568), we 

sampled only areas that were MCD forest in the year prior to fire. For the reburn (n=33,196) and triple 

burn (n=2,156) models, we constrained sampling to MCD forest that was also classified as refugia in 

previous fires. We used 50% of each sample for model fitting and 50% for model validation. The 

sampling process for each was independent, and ultimately <1% of sampled pixels were included in 

more than one model. 

Predictor variables: fuels, topography, weather, prior fire, smoke

We assessed pre-fire fuels using transformed Landsat imagery and GNN forest structure data 

(Table 1). We utilized the three Tasseled Cap (TC) indices–brightness, greenness, wetness–which are 

transformations of original Landsat bands that capture the three major axes of spectral variation (Masek 

et al., 2008). Previous studies in the US Pacific Northwest have demonstrated that TC indices are useful 

for capturing variability in conifer forests (Cohen, Maierspergers, Spies, & Oetter, 2001; Thompson, 

Spies, & Ganio, 2007) and for identifying refugia (Meddens, Kolden, & Lutz, 2016). We represented live 

fuel loading, stand structure, and fuel arrangement using GNN estimates of biomass, quadratic mean 

diameter, and stand density. 

We derived five terrain metrics to investigate the influence of topography on refugia probability: 

elevation, slope, aspect, soil wetness, and topographic position (Table 1). These variables were selected 

from a larger suite of topographic metrics based on a collinearity threshold (|r| > 0.7 Appendix S1, 

Dormann et al. 2013). We chose the spatial scale (300 m) at which to calculate topographic position A
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based on the explanatory power of different window sizes from exploratory analyses. Terrain metrics 

were calculated based on a 30-m digital elevation model using the raster (Hijmans, 2020) and RSAGA 

(Brenning, 2008) packages in the R statistical computing environment (R Core Team, 2020). 

We accounted for the influence of previous fire on refugia probability with time since fire derived 

from MTBS fire perimeter data and previous fire severity data from Landsat-derived RdNBR values. To 

evaluate how surrounding patterns of refugia influence the probability of local refugia persistence, we 

created a refugia focal index that is the sum of MCD refugia cells within a 300-m radius, which was based 

on the explanatory power of different window sizes from initial modeling. Low and high values 

represent neighborhoods where refugia are sparse and abundant, respectively. 

We characterized daily fire weather conditions using interpolated maximum temperature data. 

We chose maximum temperature because it was the most robust meteorological variable in exploratory 

analyses (where we also assessed minimum relative humidity and energy release component). Each 

sample pixel was assigned a day-of-burn date from daily fire progression maps derived from MODIS 

hotspot fire detection (Parks, 2014). We then extracted day-of-burn maximum temperature values from 

interpolated, moderate-resolution (~ 4km) meteorological grids (gridMET, 

https://www.climatologylab.org/gridmet.html; Abatzoglou, 2013). To account for substantial regional 

temperature variability, we converted raw data to temporally normalized z-scores based on fire season 

climate normals (June 1st to September 30th , 1979–2018). A z-score less than or greater than zero 

represents a below-average or above-average maximum temperature for a specific location, respectively. 

We quantified wildfire smoke using MODIS aerosol optical depth (hereafter, “smoke”) data from 

the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). MAIAC produces daily 

smoke data using a physical atmospheric-surface model and stored spectral, spatial, and thermal 

signatures for 1-km gridded cells (Lyapustin, Wang, Korkin, & Huang, 2018). We restricted our analysis 

to data from the morning overpass (TERRA satellite) because we were interested in the influence of 

latent smoke likely trapped by thermal inversions rather than smoke from active fires during the peak 

afternoon burn period (Figure 3). Because smoke data were sometimes not available for our entire study 

area each day (depending on satellite orbit paths), we temporally averaged (day-of-burn ±2 days) smoke 

imagery to produce region-wide maps. This temporal smoothing is consistent with the uncertainty 

associated with day-of-burn estimates from MODIS hotspot data (Parks, 2014). Additionally, the MAIAC 

algorithm is sometimes unable to retrieve smoke data in and around actively burning fires when smoke 

is particularly dense (David, Asarian, & Lake, 2018; Superczynski, Kondragunta, & Lyapustin, 2017). A
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Because these missing data were non-random and more likely to be associated with active fires in our 

study area, we interpolated smoke values for these locations using an inverse distance-weighted 

approach. Interpolated values were only assigned to areas where raw smoke data were absent. We 

conducted all MAIAC data processing and interpolation using Google Earth Engine. 

Fire activity above an inversion layer may be elevated due to higher temperature and lower 

relative humidity relative to conditions below the inversion or conditions in the absence of an inversion 

(Robock, 1988; Sharples, 2009). To account for this effect, we adopted a 1300-m elevation threshold 

developed by Estes et al. (2017) based on K-S weather station data and input from local managers. 

Following interpolation, locations >1300 m were assigned a smoke value of zero based on the 

assumption that smoke at these elevations was more likely to be the product of actively burning fire 

rather than latent smoke settled beneath inversions. 

Modeling fire refugia probability

We modeled refugia probability as a binary response (refugia, non-refugia) using Boosted 

Regression Trees (BRT). BRT models are well-suited to ecological modeling because they allow for 

interactions and are relatively insensitive to collinearity and outliers (Dormann et al., 2013; Elith, 

Leathwick, & Hastie, 2008). Several recent studies have successfully used BRT to model complex, non-

linear relationships between biophysical factors and fire severity (e.g, Krawchuk et al. 2016, Zald and 

Dunn 2018, Meigs et al. 2020).

Models shared the same suite of topographic, fuel, and weather variables (Table 1). Our reburn 

and triple burn models also included the refugia focal index, time since initial fire, and initial fire 

severity. The triple burn model further included time since reburn and reburn fire severity. 

We also fit submodels for each variable category to evaluate the relative importance of fuels, 

weather, and topography. We included time since fire and prior fire severity in the fuels submodels 

because these factors primarily influence fuel reaccumulation between fires (Coppoletta, Merriam, & 

Collins, 2016). The refugial focal index was included in the reduced fuel submodels because it can be 

interpreted as a measure of neighborhood fuel composition and structure. Morning smoke was included 

in the weather submodels. 

BRT model runs were parameterized following Krawchuk et al. (2016) using random subsets of 

the data to produce a minimum of 1000 trees (learning rate=0.001, tree complexity=5, bag fraction=0.5). 

We evaluated model performance based on two criteria: (1) cross-validated percentage deviance A
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explained; (2) area under the curve of the receiver operating characteristic (hereafter “AUC”) from both 

cross-validation and independent validation datasets. AUC is a synthetic metric that evaluates model 

sensitivity and specificity to assess the capacity to correctly predict the presence or absence of refugia. 

We interpreted AUC values to indicate fair (>0.6–0.7), good (>0.7–0.8), very good (>0.8–0.9), or excellent 

(>0.9) model performance (Krawchuk et al., 2016; Meigs et al., 2020). We quantified the relative 

influence of each variable to identify the factors that most strongly control refugia probability, and we 

used partial dependence plots to examine the effect of predictor variables on refugia probability after 

accounting for all other variables in the model. We assessed interactive effects of predictor variables on 

refugia probability using three-dimensional surface plots (Appendix S1), presenting results for a subset 

with the strongest interactions in each model. BRT modeling was performed using the gbm (Greenwell, 

Boehmke, Cunningham, & GBM-developers, 2020) and dismo (Hijmans, Philips, Leathwick, & Elith, 2020) 

R packages.
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Results

Initial fire refugia

Refugia accounted for 31% (9,590 ha) of the total 30,953 ha of MCD forest in 25 fires that burned 

for the first time between 2002 and 2015. Overall model performance was good (Table 2). The weather 

submodel explained more variation than either the fuels or topography submodels. Maximum 

temperature was the single most important variable and displayed a strongly negative relationship with 

refugia probability (Figure 4). Low elevations were positively associated with refugia, while 

intermediate elevations had the lowest probability of refugia. The association between morning smoke 

and refugia probability was strongly positive. Refugia probability was positively associated with TC 

wetness and topographic soil wetness and negatively associated with TC brightness. Refugia were less 

likely to occur on convex landforms and in very high-density stands with small diameter trees. Morning 

smoke had the strongest positive effect on refugia probability when maximum temperatures were much 

higher than average (Figure 1, Appendix S1). 

Reburn: persistent refugia

Persistent refugia accounted for 45% (20,349 ha) of the 45,788 ha of reburned MCD refugia 

within 105 reburns (unique combinations of first and second fire events). Overall model performance 

was good (Table 2). The fuels submodel, which included time since initial fire and initial fire severity, 

explained more variation than either the topography or weather submodels. The single most important 

variable was time since initial fire, which was generally negatively associated with persistent refugia 

probability (Figure 5). Consistent with the initial fire model, reburn refugia probability was positively 

associated with TC wetness and negatively associated with maximum temperature, topographic position, 

and TC brightness. Persistent refugia probability was highest when refugia initially burned at very low 

severity (RdNBR≈25). The relationship between reburn refugia probability and morning smoke was less 

influential and hump shaped; probabilities were highest at moderate smoke levels. In contrast to the 

initial fire model, refugia probability was positively associated with elevation, but elevation was 

substantially less influential than in other models. Locations with a higher density of neighboring refugia 

(higher refugia focal values) were more likely to persist through reburn as refugia than locations where 

nearby refugia were sparse or absent (low refugia focal values). Very low initial fire severity had a 

substantial positive effect on refugia probability within 20 years of initial fire but had little effect in older 

fires (Figure 4, Appendix S1). A
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Triple burn: super-persistent refugia

Super-persistent refugia accounted for 73% (1,347 ha) of the 1,851 ha of MCD reburn refugia 

within 16 triple burn events (unique combinations of first, second, and third fire events). Overall model 

performance was good (Table 2). The weather submodel model explained less variability in the data 

than either the fuels or topography models. Substantially more variation was explained in the triple burn 

topography submodel (19%) than in the initial fire (9%) or reburn (2%) models, and five of the ten most 

influential variables in the triple burn model were topographic. The three most important variables were 

maximum temperature, TC wetness, and elevation, all of which demonstrated associations that were 

fairly consistent with the reburn model results (Figure 6). Super-persistent refugia probability was 

positively associated with moderate to steep slopes, dense morning smoke, and areas with high potential 

hydrologic pooling. Consistent with the reburn model, the probability of super-persistent refugia peaked 

in concave topographic positions where previous fire burned at very low severity (RdNBR≈25). Concave 

landforms had a substantial positive effect on refugia probability when temperatures were well above 

average (Figure 7, Appendix S1). 
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Discussion

We reveal key factors influencing the persistence of forest as fire refugia in a highly fire-prone 

biodiversity hotspot, and highlight that some refugia appear to build up resistance as they pass through 

multiple fire filters. The distribution of refugia was nonrandom and shaped by multiple weather, 

topographic, and fuel factors. Hotter-than-average fire weather was associated with lower refugia 

occurrence and persistence, an indication that climate warming may be strengthening mechanisms 

responsible for refugia loss. Moderate to dense morning smoke  likely associated with temperature 

inversions  had a strong positive effect on refugia probability, particularly when temperatures were 

above average. The atmospheric conditions conducive to persistent inversions in the K-S have become 

considerably less common over the past century, which may be weakening a key mechanism of refugia 

persistence (Johnstone & Dawson, 2010). Super-persistent refugia appear to be at least partially 

entrained by landscape features that offer protection from fire, suggesting topographic variability is an 

important stabilizing factor for the distribution of mature conifer forest as fire activity continues to 

increase. 

Our results demonstrate that repeat burning decreases the abundance of refugia within fire 

perimeters, which is a key control on post-fire regeneration for tree species reliant on surviving 

individuals for seed sources (Coop et al., 2019). Increasing fire activity and decreasing post-fire 

regeneration rates associated with climate warming may be compounded when these same climatic 

conditions manifest as severe fire weather resulting in the loss of refugia and the seed sources they 

contain (Abatzoglou & Williams, 2016; Rodman et al., 2020). Observed and projected fire-induced shifts 

in the K-S are similar to those increasingly documented in forests worldwide. Montane forests in the US 

Rocky Mountains, eucalypt forests in Australia, conifer forests in the boreal zone, and others are 

vulnerable to short fire-free intervals and slow post-fire regeneration following high-mortality events 

(Bowman et al., 2014; Turner et al., 2019; Whitman et al., 2019). Although fire-induced forest loss is a 

major concern globally, increasing fire activity and reductions in mature forest types can also have 

ecological benefits. In the K-S, moderate or high-severity fire resulting in the loss of MCD forest may 

positively contribute to the restoration of the historical forest and non-forest patch mosaic, and support 

early-seral species like knobcone pine that rely on periodic high-severity fire to maintain their ranges 

(Reilly, Monleon, Jules, & Butz, 2019).

Some refugia appeared to become increasingly fire resistant as MCD forest passed through 

multiple fire filters. The percentage of area that persisted as refugia increased by approximately 50% A
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between initial fire (31%), reburn (45%), and triple burn (73%). Increasing resistance to fire over 

succussive fire events is likely the product of a combination of factors observed in other forest 

ecosystems, including the progressive restriction of persistent refugia into more fire-resistant landscape 

positions (Wood, Murphy, & Bowman, 2011), as well as the self-limiting effect of short fire intervals 

(Coppoletta et al., 2016; Parks, Miller, Nelson, & Holden, 2014). 

Topography was an important control on the distribution of super-persistent refugia, a result 

consistent with the influence of terrain on refugia occurrence and persistence in a wide variety of forests 

in North and South America, Africa, Europe, and Australia (Adie et al., 2017; L. Collins et al., 2019; 

Krawchuk et al., 2016; Landesmann et al., 2015; Román-Cuesta et al., 2009). As we found here, refugia in 

forest ecosystems are frequently associated with concave landforms (e.g., gullies) in wetter settings 

where fuels are moister and less available to burn (Leonard et al., 2014). The relatively strong 

topographic signal detected in our triple burn model provides evidence that contemporary repeat 

burning may strengthen the feedbacks between underlying topoedaphic templates and fire severity 

(Kane et al., 2015; Martinez et al., 2019). The stability of these feedbacks in the K-S and elsewhere may 

have historically contributed to the development of old forest structure (Camp, Oliver, Hessburg, & 

Everett, 1997), the persistence of fire-sensitive species in topographic refugia (Schwilk & Keeley, 2006), 

and the maintenance of early-seral communities dependent on recurrent high-severity fire (Odion et al., 

2010). The lack of a stronger topographic signal in our reburn models may be due in part to critical fire 

weather (79% of reburn samples burned on hotter-than-average days), which can reduce the influence 

of topography and decrease the predictability of refugia (Collins et al., 2019; Krawchuk et al., 2016). It is 

also possible that the muted effect of topography in the initial fire and reburn models may be related to a 

homogenizing effect of fire suppression, as prior studies report that topography did not strongly 

influence reburn fire severity where fire had been reintroduced after a prolonged period of exclusion 

(Coppoletta et al., 2016; Thompson & Spies, 2009).

The strong influence of prior fire severity was somewhat unexpected given that our reburn and 

triple burn analyses were constrained to a narrow range of prior fire effects (RdNBR ≤166), although 

generally similar self-reinforcing behavior has been reported in prior studies (Collins et al., 2009; 

Grabinski et al., 2017; Harris & Taylor, 2017). It is unlikely that very light burning in refugia 

meaningfully shifted forest composition and structure back towards the less dense, more fire-resistant 

norms that historically characterized much of the region’s conifer forests (Knight et al., 2020; Taylor & 

Skinner, 1998, 2003). However, very low-severity fire in refugia may have provided an optimal balance A
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between reducing surface fuels while minimizing overstory tree mortality–thereby inhibiting post-fire 

shrub or hardwood responses and reinforcing a structure more resistant to canopy-killing fire effects. 

Our finding that refugia persistence is negatively associated with time since prior fire is 

consistent with studies reporting lower reburn severity with shorter fire return intervals (Collins et al., 

2009; Parks et al., 2014), and the importance of time since fire as a mediator of fire effects in forest 

ecosystems globally (Collins et al., 2019; Héon, Arseneault, & Parisien, 2014; Prichard et al., 2017). Time 

since fire is generally interpreted as a proxy for fuel accumulation (Coppoletta et al., 2016), a process 

that rapidly (5–10 years) diminishes the self-limiting effect of fire in the K-S (Donato, Fontaine, 

Kauffman, Robinson, & Law, 2013). Refugia persistence through reburn was most probable at short fire 

intervals (<20 years), which is consistent with historic norms reconstructed from dendrochronological 

evidence (Taylor & Skinner, 1998, 2003). A small decrease in the probability of refugia persistence at 15 

years since fire in the reburn model (Figure 5b) corresponds to the interval between the most 

widespread fire years in the region (1987–2002–2017). This suggests that longer-term or larger-scale 

phenomenon (e.g., multi-year drought) unaccounted for here may contribute to both widespread fire 

activity as well as refugia loss. 

Given the relatively small degree of fire-induced change in refugia, the importance of time since 

fire may reflect neighborhood effects, as fuels–particularly resprouting shrubs and hardwoods–rapidly 

reaccumulate in surrounding higher-severity burned areas. This interpretation is supported by our 

finding that refugia were positively associated with more contiguous patches of intact conifer forest 

(lower TC brightness) and neighborhoods with larger amounts of surrounding refugia (higher refugia 

focal values). Closed canopy forests in the K-S tend to burn at lower severity than shrublands (Grabinski 

et al., 2017; Odion et al., 2004; Thompson & Spies, 2009), and high-severity fire may have had a greater 

propensity to spread into small, isolated refugia embedded in a more pyrophilic matrix.

Smoke density strongly influenced refugia probability, illustrating an important negative 

feedback loop between fire and its effects. Refugia were more likely to occur when smoke was moderate 

to dense in the morning, a relationship attributable to reduced incoming solar radiation resulting from 

smoke shading beneath temperature inversions. Smoke density was negatively associated with elevation 

(irrespective of the 1300-m threshold), and the strong influence of smoke on refugia probability could be 

considered both a topographic and atmospheric effect. Our results corroborate observations from prior 

studies and the findings from the only other study that has quantified the influence of smoke on fire 

effects using presence/absence methods that differ substantially from ours (Estes et al., 2017). There is A
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some indication that fire-atmosphere feedbacks that promote refugia persistence may be weakening as 

the atmospheric conditions (e.g., strong subsidence) responsible for persistent inversions in the K-S have 

become substantially less common over the last century (Johnstone & Dawson, 2010).

Multiple assumptions and sources of uncertainty influence our capacity to quantify drivers of 

refugia probability. The 30-m grain of Landsat-based vegetation (GNN) and severity (RdNBR) data 

cannot detect very small yet ecologically important patches of MCD forest and refugia (Blomdahl, 

Kolden, Meddens, & Lutz, 2019; Coop et al., 2019), and our methods were not designed to account for 

delayed (>1 year) mortality that likely influenced long-term refugia pattern dynamics. Additionally, 

satellite data are unable to reliably detect fire-induced change below tree canopies that may have 

influenced repeat burning dynamics in refugia (Kolden et al., 2012; Meddens et al., 2016). We recognize 

that our 10% basal area mortality threshold for refugia is somewhat arbitrary–there may be substantial 

differences in the ecological importance and persistence dynamics for refugia based on different 

thresholds (e.g. truly unburned). Although GNN data were not developed for applications in moderate- 

and high-severity burned landscapes (Bell, Gregory, & Ohmann, 2015), we assume that the GNN maps 

imputed from generally unburned inventory plots are appropriate in the context of MCD refugia with 

minimal fire-induced change. Future research could leverage additional post-fire field data, including 

observations in refugia, to better understand the structural and compositional conditions that promote 

persistence. Another limitation of our study is that we did not account for the effects of fires which 

occurred prior to 1984 when Landsat data acquisition began. Pre-Landsat fires almost certainly 

introduced variability we were unable to capture directly in our models, but we believe it is unlikely that 

much of our study area burned at high-severity in the several decades prior to 1984 because we 

constrained our analysis to mature (>80 years old) conifer-dominated forest. 

As far as we know, our integration of satellite smoke imagery into fire effects models is the first 

such effort its kind, but there are undoubtedly opportunities to improve on this approach. We did not 

explicitly include wind and atmospheric stability in our models, and future work could attempt to 

distinguish between the effects of inversions themselves (stable atmosphere, calm winds) and the effects 

of smoke shading. Smoke plume height (Lyapustin, Wang, Korkin, Kahn, & Winker, 2020) and remote 

weather station data could be combined with smoke imagery to definitively ascribe the effects we report 

here to thermal inversions. Lastly, future research could evaluate if our results are generalizable to other 

fire-prone regions with complex terrain and where thermal inversions occur. 
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Conclusion

Refugia are ecologically important components of heterogeneous fire severity mosaics. 

Topographic settings associated with enduring fire refugia support the persistence of vegetation 

communities like conifer forests in the K-S that are particularly vulnerable to changing climate-fire 

interactions (Berry et al., 2015; L. Collins et al., 2019). Observed and projected increases in both global 

forest fire activity (Andela et al., 2017) and reburns in western US forests (Buma et al., 2020) highlight 

the need to better understand the top-down and bottom-up controls on refugia occurrence and 

persistence. We found that pattern-process relationships shift in relative importance as landscapes pass 

through successive fire filters, and repeat burning appears to amplify the effect of terrain features. If 

similar dynamics operate in other forest communities, topographic templates could form the basis of 

management strategies designed to protect and restore the most fire-resistant portions of vulnerable 

forests in a wide variety of ecosystems. 
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Tables

Table 1. Predictor variables for boosted regression tree (BRT) analysis.

Variable Description (units) Source
 

Weather

Maximum temperature Z-scores from temporally normalized daily maximum temperature Abatzoglou 2013

Morning smoke Aerosol optical depth, a measure of atmospheric smoke from MODIS satellite imagery Lyapustin et al. 2018
 

Topography

Elevation (m) DEM; Farr et al. 2007

Slope (degrees) DEM

Aspect Beers transformed, 0 = southwest, 1 = northwest/southeast, 2 = northeast (unitless) Beers et al. 1966, DEM

TPI Low values represent valleys, high values represent ridges, unitless (300 m) Weiss 2001, DEM

SWI Increases with potential soil wetness, influences vegetation moisture, composition, and structure 

(unitless)

Olaya 2004, DEM

 

Fuel

Brightness (TC1) Axis 1 from Tasseled Cap transformation, from LandTrendr imagery (unitless) Crist 1985

Greenness (TC2) Axis 2 from Tasseled Cap transformation, from LandTrendr imagery (unitless) Crist 1985

Wetness (TC3) Axis 3 from Tasseled Cap transformation, from LandTrendr imagery (unitless) Crist 1985

QMD Quadratic mean diameter based on GNN imputation mapping (cm) Ohmann et al. 2012

TPH Stand density based on GNN imputation mapping (trees ha-1) Ohmann et al. 2012

Biomass Biomass based on GNN imputation mapping (kg ha-1) Ohmann et al. 2012

Refugia focal* Neighborhood amount of fire refugia cells within a 300-m radius 
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TSIF* 1-30, time since initial fire, derived from MTBS large fire database (years)

TSR** 2-23, time since reburn, derived from MTBS large fire database (years)

Initial fire severity* RdNBR burn severity based on Landsat satellite mapping (unitless) Miller and Thode 2007

Reburn fire severity** RdNBR burn severity based on Landsat satellite mapping (unitless) Miller and Thode 2007

Note: *Variable included only in the reburn and triple fire models. ** Variable included only in the triple fire model. TPI, topographic position 

index; SWI, soil wetness index; GNN, gradient nearest neighbor; DEM, digital elevation model. The response variable for all BRT modeling is a 

binary classification (refugia or non-refugia) of burn severity derived from Landsat satellite data (see Methods). 
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Table 2. Overall deviance explained, mean ROC, and variables with the greatest relative influence for full 

and reduced initial fire, reburn, and triple burn models. Columns V1, V2, and V3 represent the first, 

second, and third most influential variables in each model. Variables are defined in Table 1.

Model Variable class CV Dev. Expl. CV ROC Valid. ROC V1 V2 V3

Topography 9% 0.68 0.68 Elevation SWI TPI

Fuels 14% 0.71 0.71 TPH QMD Wetness

Weather 18% 0.76 0.63 TMax Smoke NA

Initial 

fire

Full model 26% 0.80 0.73 TMax Elevation Smoke

Topography 2% 0.59 0.59 TPI Elevation Slope

Fuels 9% 0.68 0.69 TSF Initial FS Wetness

Weather 6% 0.64 0.61 TMax Smoke NA
Reburn

Full model 14% 0.72 0.70 TSF TMax Wetness

Topography 19% 0.68 0.70 Elevation Aspect TPI

Fuels 26% 0.72 0.74 Reburn FS Wetness TSR

Weather 18% 0.69 0.62 TMax Smoke NA

Triple 

burn

Full model 34% 0.73 0.76 TMax Wetness Reburn FS
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Figure legends

Figure 1. Map of the Klamath-Siskiyou (K-S) ecoregion study area in southwest Oregon and northwest 

California, United States. Fire perimeters are from the Monitoring Trends in Burn Severity (MTBS) 

program (https://www.mtbs.gov). Areas burned twice during the Landsat era are “Reburn”, areas 

burned three times are “Triple burn.” Mature, conifer-dominated (MCD) forest was identified using pre-

fire composition and structure data based on gradient nearest neighbor (GNN) imputation (Ohmann et 

al. 2012).  

Figure 2. Maps of mature conifer-dominated (MCD) forest and MCD fire refugia extent in a triple burned 

area. The amount of relatively intact MCD forest progressively eroded over multiple fire events. Colors 

represent fire refugia that persisted through one (transient, blue), two (persistent, orange), and three 

(super-persistent, black) fire events.

Figure 3. (a) MODIS Terra true color imagery from the morning of August 26, 2017 shows morning 

smoke concentrated in the Klamath and Salmon River drainages, likely due to the presence of a thermal 

inversion. (b) Transient (red) and persistent (yellow) refugia from the 1987 Fort Copper and 2017 

Abney fires. The relatively long (30-year) period since initial fire may have reduced the probability that 

more initial fire refugia persisted through reburn.   

Figure 4. The relative influence for variables included in the initial fire model, color-coded by variable 

class. (a) Variables with the highest relative influence values most strongly affected fire refugia 

probability. (b-j) Partial dependence plots for the top nine model predictors in order of decreasing 

relative influence. Note that the scales vary on the y axes, which represent the logit probability of fire 

refugia after accounting for the influence of other predictor variables. Values on the x axis are bound by 

the 1% and 99% sample quantiles of the observed data to reduce the influence of very rare observations 

resulting in predictions that distort the representation of modeled relationships. Density plots above 

each panel represent the distribution of observed values for each variable. Partial dependence plots for 

less influential model variables can be found in Appendix S1. 
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Figure 5. The relative influence for variables included in the reburn model, color-coded according to 

variable class. (a) Variables with the highest relative influence values most strongly affected fire refugia 

probability. (b-j) Partial dependence plots for the top nine model predictors in order of decreasing 

relative influence. Note that the scales vary on the y axes, which represent the logit probability of fire 

refugia after accounting for the influence of other predictor variables. Values on the x axis are bound by 

the 1% and 99% sample quantiles of the observed data to reduce the influence of very rare observations 

resulting in predictions that distort the representation of modeled relationships. Density plots above 

each panel represent the distribution of observed values for each variable. Partial dependence plots for 

less influential model variables can be found in Appendix S1. 

Figure 6. (a) The relative influence for variables included in the Triple model, color-coded according to 

variable class. (a) Variables with the highest relative influence values most strongly affected fire refugia 

probability. (b-j) Partial dependence plots for the top nine model predictors in order of decreasing 

relative influence. Note that the scales vary on the y axes, which represent the logit probability of fire 

refugia after accounting for the influence of other predictor variables. Values on the x-axis are bound by 

the 1% and 99% sample quantiles of the observed data to reduce the influence of very rare observations 

resulting in predictions that distort the representation of modeled relationships. Density plots above 

each panel represent the distribution of observed values for each variable. Partial dependence plots for 

less influential model variables can be found in Appendix S1. 
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